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Abstract 
This paper describes an innovative and powerful 

methodology for the complete formal verification of modules 
and intellectual property (IP), and its application to the 
verification of processor IP. Unlike other formal approaches, 
the methodology is a self-contained approach to hardware 
verification, independent of simulation. The methodology 
eliminates all gaps in the verification plan and in the 
property set. It thus ensures that the IP is free of functional 
errors − the highest possible verification quality. Its 
underlying technology has been field-proven on hundreds of 
modules and IP, two of which are described, including the 
TriCore2 processor, Infineon's next generation high-end 
processor for embedded and safety-critical applications.  

I. INTRODUCTION 
The objective of verification is to ensure that 

implemented behavior and specified behavior are the 
same. Intended behavior that is not explicitly captured in 
the written specification will be referred to as “implicitly 
specified behavior” or “implicit specification”. In order to 
eliminate all deviations of the implemented from the 
specified behavior, verification methodologies must 
consider every possible input scenario to the design-under-
verification (DUV) and verify that every possible output 
signal has its intended, specified value at every point in 
time. 

Established verification approaches, however, typically 
do not identify all functional errors in a design. Errors that 
remain undetected and make it into the final chip generally 
fall into one of three types:  

• Unstimulated error: an error where the input 
stimuli used for verification fail to trigger the 
error and thus prevent its observation.    

• Overlooked error: an error that is stimulated, but 
where there is no property, monitor or assertion 
to observe and flag the erroneous behavior. 

• Falsely accepted error: an error where erroneous 
behavior is not detected because both the RTL 

implementation and the properties, monitors or 
assertions deviate in the same way from the 
specified behavior, thus masking the error. 

Simulation-based verification and traditional formal 
verification have different strengths and weakness in 
identifying such erroneous behavior. 

A. Simulation-based Verification 
Simulation-based verification approaches suffer from 

all of these error escape types.  

Simulation fails to stimulate errors because it cannot 
deploy the multitudinous stimuli necessary to exhaustively 
verify the IP in the project time available. Simulation 
coverage metrics cannot relieve this situation – they can 
only assist in the allocation of restricted verification 
resources to measure progress and to incrementally 
increase the quality of the verification.  

Overlooked errors are handled by verification planning 
and the subsequent derivation of suitable monitors and 
assertions. Verification tasks are identified by (i) 
examination of the specification and the architecture; (ii) 
relating common design patterns to appropriate assertions 
[3]; or (iii) asking the designers to note particularly 
important relations between given signals. The 
completeness of the resulting verification tasks is typically 
compromised by the inability to devise monitors that 
inspect all output signals constantly for all possible errors 
that might occur, and by human error. Consequently, it is 
essential to update the plan throughout verification in order 
to capture new insights into unmet verification needs [1].  

B. Traditional Formal Verification  
Generally speaking, formal verification has similar 

problems. Single properties are exhaustively proven with 
respect to all possible input scenarios. However, the 
properties typically have an implicative structure. When a 
given input pattern occurs (for instance, a write request is 
received by a bus arbiter), statements about the DUV state 
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and output behavior are made, (for instance, an 
acknowledgement is transmitted). Thus a single property 
typically verifies only a fraction of the possible input 
scenarios and their associated output behaviors. This leads 
immediately to the central questions in formal 
verification: “Have I written enough properties, or are 
there gaps in the property set? Is every possible input 
scenario inspected and its effect on the states and outputs 
verified by at least one property?” 

This situation is exacerbated by the fact that most 
assertions and properties can be proven only under specific 
conditions that enforce realistic behavior of the DUV.  
These conditions must be identified by the verification 
engineer, who does not always possess the design 
functionality knowledge necessary to correctly capture 
them. Moreover, traditional formal verification typically 
detects corner case problems only if the verification 
engineer anticipates them – a major challenge in complex 
designs. In other words, formal verification approaches 
have not been able to produce the gap-free property set 
that ensures an error-free design. 

The result is that – until now – formal verification has 
not enabled engineers to achieve complete verification. 
Formal verification has been operating below its actual 
potential [5]. In reality, it has often been downgraded to 
verify only some aspects of a design in order to reduce 
simulation run time.  

However, formal verification can efficiently achieve 
the essential completeness objectives when it deploys 
systematic completeness analysis to identify gaps in a 
property set. 

C.  Formal Verification With Completeness Analysis 
The approach taken with this new methodology is 

different from traditional property checking, in that it 
investigates the quality of a set of properties. An automatic 
completeness analysis formally checks whether a given set 
of properties is stringent enough to determine a unique 
value for every output of a module at every point of time, 
and to do so for every possible input stimulus. It 
automatically identifies and highlights input scenarios and 
respective output behavior that are not yet verified by any 
property, and insists upon its resolution. This ensures that 
all functionality that contributes to the input/output 
behavior of the design is thoroughly checked by at least 
one property. Consequently, it eliminates gaps in the 
property set, i.e. scenarios where the property set misses 
erroneous implemented behavior.  

Using this methodology, a set of properties must pass 
both verification flows in Fig. 1: in the left, standard 
property checking flow, the design is formally verified 
against every property, while the right flow is used to 
incrementally identify and close all gaps in the property set 
until completeness is reached. The right flow is unique to 
the presented formal verification approach and opens the 

door to a previously unachievable level of functional 
verification quality and productivity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: OneSpin 360 MV Verification Flow 

The combination of these two flows eliminates – in the 
terminology of the error classification previously defined – 
unstimulated errors and overlooked errors. Furthermore, a 
tailor-made completeness methodology complements the 
formal verification to minimize the risk of falsely 
accepting errors. If a property set, developed according to 
this methodology, passes on both flows, the verification is 
complete – the only safe criterion  to terminate 
verification. At this point, a true functional sign-off for the 
DUV has been achieved.  

Formal verification with completeness analysis is a self 
sufficient verification solution that: 

• Is independent of simulation.  
• Detects all functional errors. 
• Implements a precise and objective verification 

termination criterion, independent of human and 
heuristic factors. 

• Improves specification quality by systematically 
identifying omissions and errors in the 
specification. 

• Delivers a high verification productivity of 2 k to 
4 k lines of verified RTL code per engineer- 
month [6]. 

• Is complemented by a lean methodology that 
affords a high level of design visibility by relating 
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the transaction view of a design to its 
implementation. 

• Integrates smoothly into existing design and 
verification flows. 

The completeness analysis shifts the focus from a 
single property to the quality of an entire property set. 
When completeness analysis identifies a gap in the 
property set, and the missing information is not found in 
the specification, completeness analysis has identified a 
specification gap and provides the opportunity to close it. 
Thus the methodology also systematically improves the 
quality of the specification.  

D. Structure of the Paper 
Completeness analysis is described in section II. It is 

used in conjunction with a methodology that guides 
property development. Once adopted, the verification 
methodology can be employed to verify a large variety of 
designs. The base of the methodology clarifies how a 
design is verified with a set of properties that all belong to 
a single completeness plan. Section III describes this base 
methodology with specific reference to processors, and 
provides an application example using a small processor. 

In order to handle larger designs – up to several 
hundred thousand lines of RTL code - they must first be 
partitioned into multiple sub-designs that can be verified 
with one completeness plan. This provides a clear 
understanding of the input/output behavior with a 
precision that enables the combination of the results for the 
sub-designs by manual reasoning. This step is described in 
section IV, using the TriCore2 as an example. 

II.  COMPLETENESS ANALYSIS IN DEPTH  
Single properties are used to describe the effect of 

single transactions, while a sequence of transactions is 
captured by a chain of properties. The automatic 
completeness analysis determines whether every possible 
input scenario – corresponding to a transaction sequence 
of the design – can be covered by a chain of properties that 
predicts the value of states and outputs at every point in 
time. 

Completeness analysis uses properties of an 
implicative style, with descriptions of the input scenario 
for which the property is developed and the associated 
expected behavior. The input scenario consists of a state 
and input descriptions. The expected behavior consists of 
output and state expressions.  

An example of the completeness analysis approach is 
shown in Fig. 2. It begins with at a reset state. For every 
possible input scenario, it is first checked that a chain of 
properties can be built such that the state descriptions of 
adjacent properties are consistent. Secondly, the properties 
along these chains are analyzed to ensure that they 
determine a unique value for every output at every point of 
time.  

 

 

 

 

Fig. 2: Chains examined by completeness analysis 

Fig. 3 shows examples of gaps that completeness 
analysis identifies. In the first example, an input scenario 
is identified that is only partially covered by a property 
chain. None of the existing properties matches at the end 
of the chain, so a portion of the input scenario has not been 
covered yet. This gap could allow errors to escape 
detection.  

 

 

 

 

Fig. 3: Example gaps identified by completeness analysis 

The second example is that of an input scenario for 
which a full property chain exists, but where the 
properties do not determine a unique value for a given 
output(s) at some given point in time. In this case, the gap 
could allow erroneous output behavior to be overlooked 
and thus escape detection. 

Despite these gaps, the design may behave as 
intended. However, the completeness analysis reveals that 
the property set is not gap-free and thus does not fully 
capture the behavior of the DUV. Consequently, the 
property set cannot ensure the absence of unintended 
behavior. 

The completeness plan that is used by the 
completeness analysis consists of: 

• A property graph that specifies which properties 
can succeed each other during the process of 
building chains of properties.  

• A list of signals that should be treated as inputs 
• A list of determination requirements that allows 

the engineer to specify which output signals or 
expressions must be determined by the property 
set, and when.  

• A reset property. 

The property graph is a high level view that captures 
the intentions of the verification plan. If the graph does not 
comply with the properties themselves, completeness 
analysis flags the discrepancy, enabling a focused 
diagnosis. 
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III. OPERATION PROPERTIES 
The presented verification approach is used in 

combination with a methodology how to develop 
properties for a given design. A single, so-called operation 
property expresses and captures a single design 
transaction, which is a transition between abstract, high 
level design states. This transaction view of the design is 
an abstracted view that, being free of implementation 
detail, can be easily compared against the natural language 
specification. 

Properties have an implicative structure consisting of 
an “assume” and a “prove” part. The “assume” part of an 
operation property describes the abstract, high-level state 
where the transition starts and the condition under which 
the corresponding operation is executed. The “prove” part 
describes the expected output resulting from the operation 
and the abstract state where the respective transition ends. 

The transaction view of the operation properties is tied 
to a specific implementation via a set of mapping functions 
that map transaction-level entities – such as abstract, high-
level states and conditions – to implementation-level 
entities of the DUV. The same mapping functions are used 
in all operation properties; they are easily readable and far 
more compact then the RTL code itself.  

For instance, the transaction view of a property can 
express the expected register-level behavior of an ADD 
instruction in a processor design in a few lines. The 
mapping function, which describes, for instance, all data 
forwarding, consists of a few hundred lines – resulting in 
the detailed signal view of the property. The underlying 
RTL code comprises several thousand lines. The 
transaction view thus affords a high level functional view 
that considerably simplifies verification. 

A. Operation Properties for Processors 
Smaller, single pipelined processors can be examined 

with a complete set of operation properties without further 
subdivision. For such processors, the transaction view of 
the properties primarily captures the architecture 
description, which is used to define the contents of the 
programmer’s manual with its instruction descriptions. 
The obvious classes of operations are therefore related to 
the instructions: every operation class describes the 
execution of one instruction. There is only one high-level 
state from which each instruction execution starts and to 
which each returns. The transaction view of the related 
property then expresses that: 

• A read transaction is made on the instruction bus 
for which an abstract program counter provides 
the address. 

• The instruction read with this transaction is 
provided with data from some abstract register 
file, a program status word, etc. 

• This data is correctly processed according to the 
architecture specification involving, if necessary, 
read or write transactions on the data bus. 

• The result correctly updates the abstract registers. 
• The abstract program counter is updated 

correctly.  

Similar properties are developed for interrupts. This 
transaction view captures only the architecture description. 
It is therefore independent of – and applicable to – all 
architecture implementations.  

To transform these generic transaction view properties 
into signal view properties, all abstract values mentioned 
above are mapped to appropriate expressions about 
implementation signals.  

This mapping, which is used by all operation 
properties, typically involves controllers for multi-cycle 
instructions, etc. The proof of the instruction therefore 
ensures that these controllers always properly return to 
their idle states, and that the execution of an interrupt does 
not cause any undesired side-effect on the implementation 
state that would disturb the instruction execution later on. 

The replacement for the abstract register file – 
resulting from the foregoing mapping – is referred to as a 
virtual register file. It is a function that tests the signals in 
the implementation of successive pipeline stages in order 
to determine whether they correctly store results for a 
given register file address. It returns the first result that it 
finds, as well as the related value of the register file of the 
implementation when there is no such value in the 
pipeline. Thus, the virtual register file describes how 
forwarding provides an instruction at the beginning of a 
processor pipeline with appropriate data. This transforms 
the verification of forwarding into a by-product of the 
proof of the related property. 

The replacements for the abstract reads and writes on 
the data and instruction busses describe the signal behavior 
for the related transactions. The replacement for the 
abstract interrupt input defines how interrupts are merged 
into the instruction stream.  

In general, the expressions that replace the abstract 
values in the transaction view involve time shifts to 
account for the pipeline structure of the implementation. 
The implementation program counter provides the address 
of a store instruction several clock cycles before the output 
signals to the data bus initiate the store transaction. In 
effect, the signal view property accompanies the 
instruction while it moves down the pipeline and relates 
the proof goals about signals in every pipeline stage to 
those points in time when the stage participates in the 
execution of the instruction.  

The resulting signal view of the property typically 
makes no assumptions about other instructions before or 
after the one being examined. Therefore, the single formal 
proof of this property against the implementation shows 
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that the execution of the current instruction is not impacted 
by any precedent instruction. Thus, this proof typically 
replaces many separate verification tasks otherwise 
necessitated by the consecutive execution of all possible 
pairs of instructions.  

Completeness analysis is employed to identify and 
subsequently close all gaps in the set of properties. If the 
completeness of the resulting set of properties is 
confirmed, it is ensured that every execution trace of the 
processor can be captured by a sequence of signal view 
properties (cf. Fig. 4). Their related transaction view 
shows that this executes a program according to the 
specification. Therefore, the proof of the properties against 
the implementation, together with completeness analysis 
of the property set, ensures functional equivalence 
between the implemented processor and its architecture.  

 

 

 

 

 

 

 

Fig. 4: Sequence of instruction specific properties 

One gap often identified by completeness analysis in 
relation to this approach is a so-called bubble. This type of 
gap describes stages that fall empty because they were 
allowed to pass an instruction to the next stage while the 
previous stage stalled. The related properties must prove 
that such empty stages do not modify the virtual state and 
do not access the memory.  

B. Application Results 
This formal verification methodology with 

completeness analysis was applied to a 32 bit Infineon 
protocol processor with 40 instructions. The functional 
space of this processor is quite large, due to its 
configurability and sophisticated multithreading support 
with four contexts. Because of this large functional space, 
it seemed most expedient to apply functional verification 
using the above methodology. Simulation was used where 
it was helpful during the design process, but the project 
relied solely upon formal verification for functional 
verification. 

Despite the intricacy of the processor, only 40 
operation properties were required to completely describe 
its functionality. After 4 engineer-months, the property set 
was proven against the implementation and completeness 
analysis confirmed the absence of gaps. This terminated 
the verification. The extremely high quality delivered by 
this verification approach was demonstrated by the fact 
that in none of the several system-on-chip (SoC) projects 

that integrated this internal IP were further errors detected 
during either the ensuing system verification activities or 
in field operation. 

All errors were removed during the verification phase. 
Intricate corner cases, such as the interaction of delay slots 
and context switches, were systematically and efficiently 
explored, and identified related problems were eliminated 
with a partial, targeted redesign. 

A simulation-based verification of a previous processor 
of comparable size required nearly twice the effort and did 
not deliver as high a quality. 

C. Quality Assessment 
 

The complete formal verification of the processor 
produced a strong correctness statement. As discussed 
earlier, the combination of the property checker and 
completeness analysis detects all unstimulated and 
overlooked errors. 

However, the question that remains is to what extent the 
verification can avoid falsely accepting errors. To falsely 
accept errors, the RTL implementation and the properties 
must misinterpret the specified behavior in the same way. 
This risk is minimized by the approach described above. 
The architecture specification is translated almost verbatim 
into the transaction view of properties. The simplicity and 
conciseness of the properties – especially in comparison 
with exceedingly large testbenches – make them easily 
reviewable against the specification. Furthermore, 
independent modeling of the implemented behavior by 
compact properties reduces the probability of repeated 
modeling errors. All other user inputs about internal 
circuitry, such as the virtual register file, the replacements 
for the abstract program counter, or the abstract state, 
cannot lead to falsely accepted errors, because they serve 
as induction hypotheses along the chains of properties 
under examination by completeness analysis. This means 
that all these user inputs are checked by one property 
before they are assumed by the next property. If the user 
input does not reflect the design logic, the property cannot 
be checked against the design, leading to verification 
failure. Of course, there might be different user inputs with 
which the verification would succeed, but this scenario 
cannot mask an error.  

This is significantly different from simulation-based 
verification, in which the critical internal parts of the 
design (such as forwarding) and the specification of 
checkers to secure their proper operation are crucial. Such 
checkers are specified without the ability to ensure that 
they indeed fully capture the design’s proper operation. 
This approach thus runs the risk of falsely accepting 
incorrect behavior.   

IV. TRICORE2 VERIFICATION 
TriCore2 is Infineon’s second generation 32-bit 

processor. It is a RISC processor with added DSP and 
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microcontroller capabilities, targeted at high-end 
embedded applications, including safety-critical 
applications. It is superscalar, multi-threaded and has fast 
context-switching capabilities. It has two sets of 16 general 
purpose registers (GPR) – one for data and one for 
addresses. 

A. Planning for Complete Formal Module Verification 
The formal verification of a complex processor such as 

TriCore2 is necessarily a complex task. The effective 
execution of such a large formal verification project 
requires thorough planning, so that the verification can be 
carried out by a team of engineers working in parallel, 
leveraging the completeness methodology. This section 
describes the verification planning of large projects, using 
TriCore2 as an example. 

In the planning phase, one or more top level 
verification goals are successively decomposed as shown 
in figure 5. 

 Processor: Equivalence between 
Architecture & Implementation 

Prefetch: Correct 
instruction sequence 

 Execution part: Correct 
Execution of instructions 

Data Management: 
Correct operands 

LS IP LP 

Correct forwarding control Instruction 
Sequence Monitoring 

…

… …

… 

 

 

Fig. 5: Verification goal decomposition 

This leads to the definition of sets of parallel and serial 
tasks. Some tasks – serial tasks – can be more easily 
executed if other tasks have been previously executed, 
because the earlier tasks clarify issues required by later 
tasks. Such dependencies must be identified. Other tasks – 
parallel tasks – are independent of each other, and can be 
executed by different team members with little co-
ordination. Effort estimates are then calculated for each 
task. Finally, a graph of tasks and their dependencies is 
created. Using this graph, the parallelism inherent in the 
verification project is determined, so that the tasks can be 
efficiently distributed among a team of verification 
engineers. This effort estimation determines the project 
schedule. Project progress is reported on the base of the 
tasks and their schedule.  

An important observation from the verification plans 
created according to this approach is that very often some 

relatively small number of top level verification goals 
suffices to start the decomposition of figure 5. For 
TriCore2, the overall objective is the same as for the 
protocol processor previously discussed, namely, the 
equivalence between the architecture description and 
implementation.  

The decomposition of the top level objective proceeds 
in stages. In the first stage, the functions of fetching and 
execution are identified, and the top level requirement 
partitioned into the proofs i) that the instructions are 
fetched from the program memory and sent to the 
pipelines in the correct order and ii) that the instructions 
received by the pipelines are executed according to the 
specification.  

The verification of both fetching and execution 
functions is then further decomposed. The execution of a 
given instruction is proven by i) the provision of the 
operands and ii) the execution within the target pipeline to 
produce a modification of the architectural state, 
calculation of the result of an arithmetic instruction,  
loading of data from memory, etc. 

The correct provision of an instruction with operands is 
decomposed into the proofs that i) the instructions moving 
in the pipelines correctly signal when they provide a result 
and when the result is available (forwarding control); ii) 
the instructions are stalled when their source operands are 
not available (data dependency stalling), and iii) the 
implementation keeps track of the correct sequence of the 
instructions (instruction sequence monitoring) − a non-
trivial task because instructions are allowed to move at 
different speeds in the pipelines.  

Assuming that an instruction receives the correct 
source operands, the correct execution in each pipeline is 
verified separately for each of the three Tricore2 pipelines, 
the Load/Store pipeline (LS), the Integer Pipeline (IP) and 
the Loop Pipeline (LP). The verification of the LS pipeline 
is further decomposed for classes of instructions, for 
instance, for those that access the memory management 
unit (MMU). 

The last step in the decomposition process partitions 
some proof goals into manageable tasks by the 
introduction of temporary restrictions. For example, the 
verification of the instruction sequence monitoring in the 
Tricore2 was first defined on the assumption that there was 
no cancellation; a second phase allowed for cancellations 
due to wrong speculation, but not due to exceptions, and 
the final phases verified the functionality without 
restrictions. This stepwise removal of restrictions enables 
the verification engineer to gradually build knowledge of 
the full design functionality and to finer track verification 
progress.  

The final project plan of TriCore2 allowed three 
verification engineers to work on the project in parallel, 
condensing 8 engineer-years of effort into less than 3 years 
real time. Most tasks are executed according to the 
methodology for designs that can be verified with one 



The content of this article was presented at DVCon 2007 and is posted with DVCon’s permission. 

verification plan. This effort amounted to around 90% of 
the total verification effort. The results were then analyzed 
by informal reasoning to deduce the proof goal for the next 
level of decomposition. This combination of results 
followed the reverse order of the decomposition, all the 
way up to the top level verification objective of 
equivalence between the instruction set architecture (ISA) 
and the RTL implementation. 

B. Quality Considerations 
This decomposition procedure highlights intermediate 

proof goals, similar to the verification objectives of 
verification plans for simulation. However, for complete 
formal verification, these proof goals are typically 
expressed with some level of freedom to comprehend the 
actual results in the course of verification. This level of 
freedom does not impact the final verification quality 
because, ultimately, these intermediate goals must be 
proven if they are used in other proof tasks. Therefore, 
intermediate proof goals have no impact on the quality that 
the verification will finally produce. This is different from 
verification plans for simulation, where proof goals about 
internal behavior are identified to provide better visibility 
into the design and thus to increase the number of detected 
errors. 

Verification planning for complete formal verification 
has a major impact on schedule reliability. If the 
decomposition into tasks does not reflect the architecture 
of the design, the combination of the partitioned tasks may 
fail, and the project plan would have to be re-worked.  

The manual reasoning involved in combining the 
results of verification tasks starts from precise 
descriptions. It is therefore possible to exploit the rigor of 
mathematical proof. To minimize the impact of human 
fallibility during this step, intermediate results can be 
packaged into macros of the property language which are 
proven in one task and assumed in the other.   

C. Example Verification Task 
As an example, we consider the data management 

tasks for the integer pipeline. This involves proving 
properties for the correct behavior of forwarding control 
signals as well as combining the related results with the 
results of other tasks to ensure the proper delivery of 
operands.  

The inputs to the forwarding control functionality are 
the opcode, stall and cancel signals. The forwarding 
management signals are for each pipeline stage: 

• VPTR: set if the instruction produces a result. 
• VRES: set if the result of the instruction is valid 

in the pipeline stage. 
• VPSW: set if the instruction modifies the status 

word. 

• Signals carrying result and destination register 
address. 

The IP instructions are grouped into classes with the 
same expected behavior of the forwarding management 
signals. For example, the class early_vres groups the 
instructions that produce a result in the first execution 
stage ex1. A property is written for each class of 
instructions. The property describes the expected behavior 
of the VPTR, VRES, VPSW result and the destination 
address signals from the point in time at which the 
instruction is ready to leave the decode stage, dec, to the 
time it leaves the pipeline. For example, the early_vres 
property describes how: 

• VPTRdec and VPSWdec are set when the 
instruction is in the decode stage, while VRESdec 
is not set. 

• VPTRex1, VPSWex1, VRESex1 are set when the 
instruction moves into the first execution stage 
ex1 and remain set until the ex1 stall signal is 
removed. 

• VPTRex2, VPSWex2, VRESex2, VPTRwb, VPSWwb, 
VRESwb are set when the instruction moves into 
the write-back  stage wb.  

• The destination register address propagates 
correctly through all stages. 

• The result signal propagates from the point of 
time onwards where the VRESex1 signal becomes 
true. 

Results of the forwarding control tasks (as sketched 
above) were combined with the results of the data 
dependency stalling and instruction sequence monitoring 
tasks to show that the instructions are provided with the 
correct operands. The instruction sequence monitoring task 
takes the application of new instructions in the three 
pipelines as inputs and proves the correct setting of the 
instruction tags, so that the sequencing of the instructions 
in the pipeline can be established. The data dependency 
stalling task takes the attributes of the verification 
operands as inputs, proven by the forwarding control task, 
and the instruction tags, proven by the instruction 
sequence monitoring, and proves that an instruction stalls 
in the decode stage until its source operands are ready for 
forwarding. 

D. Example Error  
During a similar verification for the load store pipeline, 

an error was found that is one example of the type of 
problems that complete module verification detects.  

The error occurs with an instruction sequence similar 
to the following: 

(1)  LOAD D2  

(2)  ADD D0=D2+0 

(3) ADD D6=D4+0 
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(4)  ADD D8=D2+0 

(5) STORE D8 

Instruction (5) must be misaligned, that is, taking two 
accesses to complete. Further on, an external write to one 
of the core special function registers needs to be executed 
during the second access of instruction (5). Then the old 
data in register D8 (i.e. before instruction (4) writes to D8) 
is stored, contrary to the expected behavior, where the 
result of (4) is to be stored. This clearly is an obscure 
corner case error highly unlikely to be triggered in 
simulation – which is not to say that it is highly unlikely to 
occur in real life. Since it depends upon a particular code 
sequence, it has a software workaround. Therefore, it is not 
classified as critical, but it is crucial to find these types of 
error during verification to avoid failure  in later safety-
critical application. Its correction is supported by formal 
verification, because the set of instruction sequences that 
make the error occur could be precisely identified.  

E. Error Statistics 
The verification of TriCore2 combines formal and 

simulation-based approaches. The simulation-based 
dynamic verification of TriCore2 is detailed in [2]. 
Essentially, it consists of a large suite of assembly tests, 
some hand-written, some Perl-generated and some 
generated using a Specman Instruction Stream Generator 
(ISG). The ISG is capable of generating both highly 
directed and highly random tests. The tests can be run on a 
configurable, directed testbench, or on a constrained-
random testbench. Configuration options include where 
the test is placed in memory, whether the MMU or 
external coprocessor is enabled, etc. The directed 
testbench is designed to generate external bus traffic, 
interrupts and idle requests at critical times. The random 
testbench generates these stimuli randomly, exploring 
unforeseen problem areas. 

Checking is carried out on several levels. Many tests 
are self-checking, jumping to fail for unexpected results. 
Beyond this, an instruction-by-instruction comparison of 
the traces produced by the design is compared with that 
produced by the golden model. A comparison of the 
memory contents is made at the end of the test and OVL 
assertions are embedded in the design. Sign-off criteria 
included both structural and functional coverage targets 
(e.g. 100% statement and branch coverage, 100% of 
defined functional coverage hit). This involved 
considerable effort in terms of engineering time, license 
use, and use of computer resources.  

Errors found during TriCore2 verification were tracked 
and information about the methodology that detected the 
error and its severity was recorded. Errors were not tracked 
until the directed test suite (of around 10,000 tests) had a 
pass rate of over 99% in the default configuration, thus 
ensuring a base level of design quality. After this base 
level of quality was achieved, the formal verification of 
TriCore2 found 89 errors (out of a total of 259 errors 

reported by all methodologies) in the design and 67 errors 
in the specifications.  

Since the formal verification was run concurrently with 
the dynamic verification, some of the errors found by 
formal verification might also have been found by the 
dynamic verification. However, analysis of the nature of 
the errors suggests that this would apply to at most 40 of 
the design errors. Conversely, once the formal verification 
of an area of TriCore2 was complete, no other verification 
methodology found further errors in that area. Of the 50 
design errors that would not have been found by 
simulation, several were classified as critical (meaning 
unavoidable lock-up or data corruption).  

The specification errors were found during the 
formalization of the architecture and when the 
implemented instruction execution was verified against the 
formalized architecture description. Its number might 
show how precisely the architecture can be formalized. 
The verification discovered differences that were corrected 
by adapting the specification. 

V.  CONCLUSION 
Existing verification techniques, both static and 

dynamic, can leave errors in the design undetected. The 
complete formal verification methodology presented in 
this paper combines the formal proof of individual 
properties, the automatic formal proof that the set of 
properties is a complete description of the design 
functionality, and the transaction-based  style of the 
properties to prove that the design is error free. Two 
examples of the application of the methodology were 
described, the complete verification of a single-pipeline 
protocol processor and of the superscalar Tricore2 
processor. The verification of the Tricore2 also details how 
complex verification tasks are managed and decomposed, 
showing that the methodology is applicable to large IPs 
and is suitable for execution by verification teams. 
[1] Aycinena: Verification Test Plan: The Book :  EDA Café: 
http://www10.edacafe.com/nbc/articles/view_weekly.php?articleid=307
775 
[2] Bruno, Blackmore: Verifying the Tricore2 Multithreaded 
Microprocessor, Design Con 2006 
[3] Foster, Krolnik, Lacey: Assertion Based Design: Springer 2003 
[4] Murphy, Kurshan, Albin, Wolfsthal, Geist, Sawada, Nguyen, Fix, 
Gorman, Edwards, Yeh, Joyner: Research Needs in Verification, April 
2005 - www.src.org/fr/s200502_needs.pdf 
[5] Shimizu, Gupta, Koyama, Omizo, Abdulhafiz, McConville, 
Swanson: Verification of the Cell Broadband EngineTM  Processor: DAC 
2006 
[6] Bormann, Blank, Winkelmann: Technical and Managerial Data 
About Property Checking With  Complete Functional Coverage: Euro 
DesignCon 2005 


