
© SCDsource 2007-2010 Page 1 of 6

First Look

OneSpin Advances Formal Assertion/RTL Debug Automation

By Bill Murray

07/15/09

OneSpin has launched RootCauseAnalyzer, a new enhancement of its OneSpin 360MV formal 
assertion-based verification (ABV) solution, which automates the analysis and debug of formal 
SystemVerilog assertions (SVA) and RTL code. The company states that it eliminates much of the 
manual effort required to find the root cause of failing SVA. Moreover, it enables the efficient debug of 
the complex, hierarchically-coded, specification-level assertions that are critical to boosting formal 
ABV quality and productivity.

Michael Siegel, OneSpin’s product marketing director, said “The tool’s automation eliminates a barrier 
to the adoption of specification-level assertions, which leverage advanced SVA constructs such as 
nested function calls, and predefined sequences and properties. The effort-intensive manual debug of 
such assertions hinders many users from exploiting them to their maximum potential. Users often 
resort to a larger collection of simpler assertions. This not only fails to use the full power of assertions 
and assertion reuse, it also complicates review of the assertions against the specification. Moreover, it 
imposes a significantly higher assertion maintenance effort if the RTL changes.”

How big a productivity boost can the tool deliver? Siegel said “It can reduce debug time by 2X to 10X, 
depending upon assertion and design complexity – the higher the complexity, the greater the gain. 
Assertion and design debug accounts for about 30 to 40 percent of the total formal verification time 
and effort, so our debug productivity improvements can significantly reduce verification schedules and 
design cost.”

How long does it take users to get up and running? Siegel said “The components of the
RootCauseAnaylzer are easy to learn. It takes less than an hour to become productive.”

Debugging Assertions

What do you do when an assertion fails? How do you determine the cause of the failure? Is the 
assertion code incorrect? Is there an illegal input scenario that the constraints failed to exclude? Or is 
there a bug in the RTL code? Or is it a combination thereof? Siegel said “Without highly automated 
debug support, it requires significant manual effort to answer these questions. This manual effort can 
put a serious dent in the team’s productivity, even in the case of relatively simple assertions that 
verify local RTL behavior.”

According to Siegel, the debug productivity hit can be considerably greater when the team uses 
specification-level assertions, which verify RTL behavior at the level of, for example, complete design 
transactions. Systematic verification of design transactions increases verification productivity, so they 
are a powerful enhancement to ABV flows. But the resulting assertions can consist of hundreds of lines 
of hierarchically-structured code spanning hundreds or thousands of clock cycles, posing a significant 
debug problem when they fail. So, how do you debug them efficiently?



© SCDsource 2007-2010 Page 2 of 6

Siegel said “We have solved this problem by automating the most effort-intensive steps in SVA 
analysis and RTL debug.”

According to Siegel, the company’s new RootCauseAnalyzer comprises four individual components that 
constitute a four-step debug flow:

 The WaveformAnalyzer (WA) identifies the clock cycle where the assertion is first violated, and 
generates diagnostic information to speed understanding of counterexamples.

 The StructuralAssertionAnalyzer (SAA) – an SVA code debugger – automatically identifies the 
failing parts of the assertion and shows the user where to start assertion debug.

 The TemporalFaninAnalyzer (TFA) automatically traces the signals involved in the assertion 
failure to related RTL design signals, thus enabling efficient exploration of signal relationships 
across all relevant clock cycles and module boundaries.

 The ActiveCodeAnalyzer (ACA) automatically identifies those regions in the RTL source code 
that are involved in the assertion failure.

Siegel said “The RootCauseAnalyzer’s four step process eliminates a great deal of tedious, manual 
search and analysis. The StructuralAssertionAnalyzer is particularly key to reducing debug effort and 
speeding the whole debug process. In hierarchically described assertions, it analyzes the definitions of 
all referenced functions, sequences and properties, and pinpoints the failing clause across the entire 
hierarchical definition of the assertion – a daunting task for manual debug.”

Does the tool interoperate with third-party debug automation tools? Siegel said “It feeds downstream 
RTL debug tools such as SpringSoft’s Debussy and Verdi. However, it does not need these tools to do 
its job.”

Debug Example

In our interview, Siegel illustrated the flow using an example of an AHB-to-Wishbone bridge – an 
OpenCores design with 9,000 lines of code and 6,500 flip-flops (see figure 1). The bridge allows an 
AHB master to perform single or burst read/write accesses to a Wishbone slave.

Figure 1: The AHB-2-Wishbone bridge – an OpenCores design

The following hierarchical assertion uses named properties, sequences and functions to capture a 
single-write transaction of the bridge (see figure 2(a)).



© SCDsource 2007-2010 Page 3 of 6

Figure 2: A hierarchical assertion for a single-write bridge transaction (Source: OneSpin)

The hierarchical assertion refers to the property single_write_wait (see figure 2(b)), which is itself 
hierarchically described using predefined objects. Coding, understanding and reuse are structured and 
simplified by the use of the predefined sequences SingleWriteStart and keep_stable (see figure 2 (c)), 
and the nested functions wb_write_ctrl and wb_write_addr. For example, the parameterized sequence 
keep_stable states that a set of control signals is kept stable until an expected signal arrives within a 
number of clock cycles defined by a parameter MAX_WAIT.

The assertion fails on the AHB-2-Wishbone design and the formal verification tool generates a 
counterexample showing a design behavior that contradicts the assertion.

Debug Step 1 – Waveform Analysis

The WaveformAnalyzer displays diagnostic information to speed analysis of counterexamples that 
show the assertion failure (see figure 3).

According to Siegel, the WaveformAnalyzer indentifies the clock cycle where the assertion is first 
violated, and colors signals to speed understanding of the counterexamples. It shows in red which 
signals are involved in the assertion failure, and shows by means of the vertical yellow line that the 
assertion fails in the third clock cycle and that the signals adr_o, haddr and ack_i are somehow 
involved in the failure.

Siegel said “When working with a simple assertion, such as one that states that two signals are 
expected to have the same values, the WaveformAnalyzer often gives sufficient information about the 
signals involved in the assertion failure to understand which part of the assertion needs further 
inspection. However, in more complex assertions, it is much harder to locate which part of the 
assertion actually causes the failure. That’s where the StructuralAssertionAnalyzer comes in.”



© SCDsource 2007-2010 Page 4 of 6

Figure 3: WaveformAnalyzer displays diagnostic information (Source: OneSpin)

Debug Step 2 – Assertion Failure Identification

The StructuralAssertionAnalyzer is a SVA code debugger that automatically identifies the failing parts 
of the assertion, and marks them red, showing the user where to start assertion debug. As stated 
earlier, it analyzes all referenced functions, sequences and properties, and pinpoints the failing clause 
across the entire hierarchical definition of the assertion (see figure 4).

Here, it automatically identifies and highlights the expression “adr_o=haddr” in function
wb_write_add_fn as the reason why the assertions fails. All objects not violated by the
counterexample are left unmarked.

Figure 4: The StructuralAssertionAnalyzer automatically identifies failing parts of the assertion (Source: 
OneSpin)



© SCDsource 2007-2010 Page 5 of 6

Where assertions use repetition operators, such as “[0:MAX_WAIT]” in the sequence keep_stable, the 
question arises: which parts of the assertions match until which clock cycles in the counterexample?

The StructuralAssertionAnalyzer performs an automatic analysis which instantiates ranges in SVA 
repetition operators with a concrete value that is best suited for debugging. In this example, it has 
instantiated the wait period with the value 2, showing that in the consequent of the assertion the 
control signals remained stable for two cycles and then the assertion violation occurred in the third 
cycle in the clause marked red. Analysis across the assertion hierarchy and the instantiation of 
repetition operators enables automatic annotation of all objects referenced in the assertion with values 
– including all objects in referenced functions, sequences and properties – for all clock cycles relevant 
to the failure, based on the counterexample. Value annotations for ‘adr_o’ and haddr’ are shown in the 
screenshot for the third clock cycle.

Siegel said “Without the StructuralAssertionAnalyzer’s automation, every one of these analysis steps 
would have to be done manually. In particular, the use of functions, sequences and properties, 
repetition operators and local variables add significantly to debug complexity and effort.”

Debug Step 3 – Signal Trace Analysis

The TemporalFaninAnalyzer automatically traces the signals involved in the assertion failure to related 
design signals, thus enabling efficient exploration of signal relationships across all relevant clock cycles 
and – more importantly – across module boundaries. It automates otherwise tedious manual analysis 
of signal dependencies across clock cycles and the search for design signals involved in the failure 
across the modules of the design.

As can be seen in figure 5, the signal adr_o at clock cycle 3 depends on a register addr_temp at clock 
cycle 3, which itself depends on the input signal haddr at clock cycle 2. The last column ‘Time’ 
indicates the signal dependencies across cycles, the column ‘Module’ shows in which module the 
respective signals are defined.

Figure 5: The TemporalFaninAnalyzer automatically traces signals involved in the assertion failure 
(Source: OneSpin)



© SCDsource 2007-2010 Page 6 of 6

Debug Step 4 – RTL Failure Identification

Finally, the ActiveCodeAnalyzer automatically identifies those regions in the RTL source code that are 
involved in the assertion failure and marks them red (see figure 6). Conditional code that does not 
contribute to the failure remains unmarked.

Figure 6: The ActiveCodeAnalyzer automatically identifies relevant RTL regions (Source: OneSpin)

The analysis and display of active code regions is generated for all relevant clock cycles of the 
counterexample, thus automating RTL code exploration across clock cycles, focusing and speeding RTL 
source code debug. In this case, further analysis shows that the root cause of the assertion failure is 
that the input address from the AHB master is output by the bridge one cycle later to the Wishbone 
master side than stated in the assertion. A cross-check with the specification shows that the design 
behavior is correct; thus the assertion must be corrected.

Availability

The RootCauseAnalyzer is available now in OneSpin’s 360 MV family of formal verification solutions. 
OneSpin will demonstrate the new tool at the Design Automation Conference 2009 in San Francisco, 
California. Booth 3465 in the North Hall.

Further Reading

 OneSpin Offers Step-by-Step Formal Verification Suite. SCDsource.

 Formal – Rocket Science or Mainstream Technology? A Deeper Look. SCDsource.

 Mixing Formal and Dynamic Verification, Parts 1 and 2. User survey and interviews. SCDsource.

http://www.onespin-solutions.com/downloads/SCD-Richard-Goering-Step-by-Step.pdf?id=328
http://www.onespin-solutions.com/downloads/SCDDeeper-Look.pdf?id=351
http://www.onespin-solutions.com/downloads/SCD-Bill-Murray-Mixing-Formal.pdf?id=333

	First Look
	OneSpin Advances Formal Assertion/RTL Debug Automation
	Debugging Assertions
	Debug Example
	Debug Step 1 – Waveform Analysis
	Debug Step 2 – Assertion Failure Identification
	Debug Step 3 – Signal Trace Analysis
	Debug Step 4 – RTL Failure Identification

	Availability
	Further Reading


