The ISO 26262 standard governs the development of safety-related electrical and/or electronic (E/E) systems within road vehicles. ISO 26262 imposes stringent requirements that encompass the entire life cycle of a system, from concept phase to development, production, and decommissioning. It addresses the overall safety management process and covers relations with suppliers and interfaces for distributed development. The risk of liability is a clear driver of the adoption of the ISO 26262 standard, but there is more at stake: vehicle recalls in the millions and malfunctions leading to fatal car accidents not only cause economic damage, but also diminish the brand image of the companies involved.
The standard specifies two types of component faults, which must be fully verified. Systematic faults are introduced during component development, either through human error or tool/methodology malfunction. Systematic faults are handled through rigorous verification and the careful tracking of specific device requirements. The standard also addresses random faults: those that occur during the actual operation of the device due to external effects. These faults must be safely handled by the circuitry within the device. This requires the use of fault handling capabilities built into the systems, which must in turn be verified to ensure that they will catch the vast majority of possible random faults.
Table of contents
- Executive Summary
- Functional Safety Standards & Automotive Hardware
- Key Aspects of ISO 26262
- Systematic & Random Hardware Failures
- The Power of Formal Methods
- Avoiding Systematic Faults Using Advanced Verification Techniques
- Safeguarding Against Random Hardware Faults—Safety Mechanisms & Their Verification
- Fault Injection Techniques & Challenges
- Formal Verification of Safety Mechanisms
- Formal Fault Propagation Analysis
- Future Challenges for Automotive Hardware
- Author
- References