close By using this website, you agree to the use of cookies. Detailed information on the use of cookies on this website can be obtained on OneSpin's Privacy Policy. At this point you may also object to the use of cookies and adjust the browser settings accordingly.

Why IP Quality is So Difficult to Determine

By Ann Steffora Mutschler, Semiconductor Engineering | Feat. Tom Anderson, Technical Marketing Consultant, OneSpin

How it is characterized, verified and used can have a big impact on reliability and compatibility in a design.

Differentiating good IP from mediocre or bad IP is getting more difficult, in part because it depends up on how and where it is used and in part because even the best IP may work better in one system than another—even in chips developed by the same vendor.

This has been one of the challenges with IP over the years. In many cases, IP is poorly characterized, regardless of whether that IP was commercially or internally developed by a chipmaker. But as chips become more complex, subject to more interactions from multiple power domains and use cases, even the best intentions to characterize IP can go awry.

[...]

Just the term “quality” is overloaded due to associations with “Six Sigma” and other specific industry initiatives, suggested Tom Anderson, technical marketing consultant at OneSpin Solutions. “The term ‘IP integrity’ is broader in scope.”

Assuring the integrity of a design encompasses four critical dimensions—functional correctness, safety, security and trust. Functional correctness is the focus of traditional verification, ensuring that the design meets its functional specification. In the case of IP, this specification often involves a standard such as the USB 3.0 interface or the RISC-V instruction set architecture (ISA).

But functional correctness alone isn’t sufficient for many designs. “Safety-critical applications, such as mil-aero, embedded medical devices and self-driving cars, require that designs operate correctly in the field,” said Anderson. “Random errors such as alpha particle hits must not compromise design safety. Many types of IP are used for these applications, so the providers must account for safety, and the IP integrators must confirm this. In many of these same applications, the IP must not contain security vulnerabilities that could allow malicious actors to take control of chips containing the IP in the field. Both IP providers and IP integrators must screen designs for any accidental security holes.”

Back

Related Links